Michael Laposata MD, PhD
Pathologist-in-chief
Vanderbilt University Hospital
Professor of Medicine and Pathology
Vanderbilt University
School of Medicine
Rosemary Jaromin
Godmother of patient Jazmin

Corinne Smith
Mother of patient Craig
Why are we Discussing the Importance of Diagnostic Tests at an AACC Meeting?

1. Most lab directors rarely leave the lab to see patients undergoing evaluation – seeing the patient shows the importance first hand

2. Automation and technically complex methodologies are re-focusing many lab directors more on non-clinical issues and the automation processes

3. There is a nationally recognized need to build communications between lab directors & treating physicians about which tests to order and interpretation of the test results

4. Errors can have tragic consequences
Background Information
Can a bruised or bleeding child suffer a minor unintentional injury and be mistakenly identified as an abused child?
DIAGNOSIS OF CHILD ABUSE

• Many child abuse cases are brought to attention by bruises or other bleeding symptoms

• Overdiagnosis of child abuse is clearly not as large a problem as the underreporting of child abuse

• However, any incorrect conclusion is catastrophic to children and parents.
DIAGNOSIS OF CHILD ABUSE

• The medical literature contains many case reports in which child abuse was overdiagnosed in children with hemorrhagic coagulopathies.

• A major concern is that overdiagnosis may be more common than is currently believed because of the high prevalence of von Willebrand’s disease, which may be on the order of 1% in the general population.
In 1996, an estimated 3,126,000 child abuse cases were reported to Child Protective Services (CPS) agencies, approximately 31,260 (1%) of which may have a coagulopathy such as von Willebrand’s disease.

Thus, there is an absolute need to rule out a hemorrhagic coagulopathy with appropriate testing in children who are allegedly victims of child abuse.
SYMPTOMS THAT SUGGEST CHILD ABUSE AND NONINFLICTED ENTITIES THAT MIGHT CAUSE THEM

<table>
<thead>
<tr>
<th>Physical Symptom</th>
<th>Possible Noninflicted Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burns and Scalds</td>
<td>Impetigo</td>
</tr>
<tr>
<td></td>
<td>Dermatitis</td>
</tr>
<tr>
<td></td>
<td>Fixed drug eruption</td>
</tr>
<tr>
<td></td>
<td>Mechanical abrasion</td>
</tr>
<tr>
<td></td>
<td>Accidental exposure to commercial grade vinegar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Symptom</th>
<th>Possible Noninflicted Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruises</td>
<td>von Willebrand disease</td>
</tr>
<tr>
<td></td>
<td>Hemophilia A and B</td>
</tr>
<tr>
<td></td>
<td>Idiopathic thrombocytopenic purpura</td>
</tr>
<tr>
<td></td>
<td>Thrombocytopenia with lymphoblastic leukemia</td>
</tr>
<tr>
<td></td>
<td>Vitamin K deficiency</td>
</tr>
<tr>
<td></td>
<td>Purpura fulminans</td>
</tr>
<tr>
<td></td>
<td>Meningitis with disseminated intravascular coagulation</td>
</tr>
<tr>
<td></td>
<td>Hemorrhagic disease of the newborn</td>
</tr>
<tr>
<td></td>
<td>Henoch-Schönlein purpura</td>
</tr>
<tr>
<td></td>
<td>Ruptured subarachnoid vascular formation</td>
</tr>
</tbody>
</table>

COMPARISON SLIDES OF CHILD ABUSE VS. COAGULOPATHY – Which case is abuse and which case is a child with a bleeding disorder who experienced a minor injury?
Major Findings with Shaken Baby Syndrome
FINDINGS ON EXAM

- Bilateral Retinal Hemorrhages
- Subdural Hematoma
- No Bruises Anywhere
In children, bridging cerebral veins are poorly supported as they pass through subdural space. Violent shaking may cause vulnerable veins to tear, creating subdural hematoma.
HEAD INJURIES

Funduscopic views

In young children, retinal and subhyaloid hemorrhages accompany subdural bleeding.

In older children, frank papilledema may accompany increased intracranial pressure caused by subdural bleeding.

Clinical Symposia. 1977; 29(5):16-23
Brief synopsis of the 2 Cases
Jazmin case
HISTORY OF THE CASE

• Father alleges he dropped his 3 month old daughter as he was feeding her a bottle

• Claims to have caught her by the right ankle and lifted her up sharply before she struck the ground
RELEVANT HISTORY

- Child is known to bruise easily in routine daily interactions

- A seatbelt has been shown to cause bruising
MODIFIED DIAGNOSIS

Shaken Baby Syndrome,

UNLESS a hemorrhagic coagulopathy can be identified
TESTING FOR A HEMORRHAGIC COAGULOPATHY

PT/PTT/Platelet count/
von Willebrand factor/ristocetin cofactor

• Values for Platelet count, PT and PTT normal
• Values for von Willebrand factor and ristocetin cofactor in the low end of the adult normal range
ACTIONS

• Child placed in foster care

• Father indicted for child abuse and subsequently imprisoned
IN FOSTER CARE

After 3 months in foster care, the child develops meningitis and a new subdural hemorrhage - flown to MGH in critical condition
Bleeding After Surgery

Fib 549 F VIII 180 Risto 98 vWF 145
Fib 407 F VIII 286 Risto 168 vWF 251

Nose Bleeds

Fib 300 F VIII 206 Risto 168
Fib 385 F VIII 289 Risto 170

Fib 473 F VIII 186 Risto 180 vWF 232

Nose Bleeds

Fib 239 F VIII 103 Risto 52 vWF 81
Fib 216 F VIII 89 Risto 50 vWF 75

Patient 0+

Fib 346 F VIII 164 Risto 85 vWF 130
Fib 315 F VIII 154 Risto 85 vWF 105
Fib 325 F VIII 144 Risto 95 vWF 135
Fib 304 F VIII 175 Risto 118 vWF 145
CONCEPTS IN THE DIAGNOSIS OF VON WILLEBRAND’S DISEASE UNLIKELY TO BE KNOWN TO A NON-EXPERT

• vW Factor can increase 2-3 fold with injury, infection or other acute phase reactant stimulus

• A 30% vW factor at baseline at the time of an accident can rise to 90% by the time patient is tested
CONCEPTS IN THE DIAGNOSIS OF VON WILLEBRAND’S DISEASE UNLIKELY TO BE KNOWN TO A NON-EXPERT

• The normal range for vW factor is higher in children < 6 months of age than adults

• An abnormal value for a 3-month old child may be normal for an adult
HOW WAS THE MISTAKE MADE?

A low value was missed because --

The physician did not know that the patient’s von Willebrand level increases after injury and that re-testing of the patient is ABSOLUTELY NECESSARY to determine the baseline level of von Willebrand factor.

The physician did not know that the reference range for von Willebrand factor in children <6 months is higher than it is for adults.
Interpretation of Test Results for Von Willebrand’s Disease

<table>
<thead>
<tr>
<th></th>
<th>VWF (%)</th>
<th>RCoF (%)</th>
<th>Fibrinogen (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Presentation</td>
<td>65</td>
<td>78</td>
<td>326 & 279</td>
</tr>
<tr>
<td>at Outside Hospital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3 months old)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stated Reference Range</td>
<td>50-150</td>
<td>50-150</td>
<td>180-460</td>
</tr>
</tbody>
</table>
INTERPRETATION OF TEST RESULTS FOR VON WILLEBRAND’S DISEASE

<table>
<thead>
<tr>
<th></th>
<th>VWF (%)</th>
<th>RCoF (%)</th>
<th>Fibrinogen (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Presentation at MGH (6 months old)</td>
<td>50</td>
<td>50</td>
<td>865</td>
</tr>
<tr>
<td>2 Weeks After Initial Presentation at MGH</td>
<td>40</td>
<td>34</td>
<td>504</td>
</tr>
<tr>
<td>4 Weeks After Initial Presentation at MGH</td>
<td>33</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Type 0 blood mean vWF value for adults for this blood type = 74%. No stated normal range at the MGH.
Craig case
HISTORY OF THE CASE

• Father alleges his child fell off a bed when playing with his older siblings while he was preparing a bottle of formula for the child

• The children – ages 2 and 4 - say their baby brother fell off the bed directly onto the hardwood floor about 3 feet above the floor
ACTIONS

• Father not permitted to be home alone with the children for a period of more than one year – had to sleep at the neighbor’s home

• Father indicted for attempted murder of his son
HOSPITAL CARE IN
2 MAJOR MEDICAL CENTERS

After months of evaluation, including neurosurgery to address his subdural hematoma, multiple esoteric studies were performed to assess the child for inborn errors of metabolism - and NO full assessment for bleeding was performed.
AFTER DISCHARGE

After father’s attorney finds a coagulation service for evaluation, von Willebrand’s disease identified in the child and his 2 siblings
TESTING FOR A HEMORRHAGIC COAGULOPATHY

- Values for PT and PTT and platelet count normal on multiple occasions
- Values for von Willebrand factor and ristocetin cofactor for the affected child in the 60% range on first testing with rhinorrhea, then in the 50% range finally in the 30% range
LABORATORY TESTING

Siblings reported to bruise easily

Testing of siblings reveals values in the 20% range for brother and 50% range for sister for vWF and ristocetin cofactor
Schedule for Presentations in this Session

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike Laposata</td>
<td>Introduction of Cases</td>
</tr>
<tr>
<td>Corinne Smith and</td>
<td>Part 1 of Patient Narratives with Discussion</td>
</tr>
<tr>
<td>Rosemary Jaromin</td>
<td></td>
</tr>
<tr>
<td>Mike Laposata</td>
<td>Evaluation of the bleeding patient</td>
</tr>
<tr>
<td>Corinne Smith and</td>
<td>Part 2 of Patient Narratives with Discussion</td>
</tr>
<tr>
<td>Rosemary Jaromin</td>
<td></td>
</tr>
<tr>
<td>Mike Laposata</td>
<td>von Willebrand’s Disease</td>
</tr>
<tr>
<td>Corinne Smith and</td>
<td>Part 3 of Patient Narratives with Discussion</td>
</tr>
<tr>
<td>Rosemary Jaromin</td>
<td></td>
</tr>
<tr>
<td>Mike Laposata</td>
<td>Analysis of the Misdiagnoses</td>
</tr>
<tr>
<td></td>
<td>BREAK WILL OCCUR AT MID-POINT</td>
</tr>
</tbody>
</table>
Full evaluation of the patient with bleeding
Is the Bleeding Traumatically Induced?

YES

Is There Any Reason At All to Consider a Pre-existing Bleeding Disorder That Was Present at the Time of Trauma?

NO

No Evaluation for an Underlying Cause for Bleeding is Needed – Bleeding is Fully Explained by Trauma
Is it Spontaneous Bleeding or Was there Trauma with a Potentially Underlying Bleeding Disorder?

YES

Evaluate the Patient for –
- Coagulation factor deficiencies with PT and PTT
- Abnormal platelet count
- von Willebrand’s Disease with VW antigen, Ristocetin cofactor, factor VIII, fibrinogen, and blood type
- Platelet function studies with a platelet aggregation test
- Factor XIII and Antiplasmin deficiencies (rare, but identifiable with simple tests)
Which tests for bleeding were not done in Jazmin's Case?

Von Willebrand’s Testing was done, but the test results were misinterpreted.

No Platelet Function Studies

No Assessment for Rare Disorders
Which tests for bleeding were not done in Craig’s Case?

- No Von Williebrand’s Studies
- **No Platelet Function Studies**
- No Assessment for Rare Disorders
How easy is it to obtain a patient-specific, expert-driven narrative interpretation of the test results - as done in radiology?

- **PT/PTT Prolongations**
- **Von Willebrand Study**
- **Antiphospholipid Antibody Evaluation**
- **Hypercoagulability Evaluation**
- **Other**

All of these “Special” coagulation studies are automatically interpreted **without** further request, by an expert lab director & the results are included in the lab report.
How easy is it to order the right tests with reflex testing?

X Von Willebrand Panel

A check means all the tests in the von Willebrand Panel are performed – omission of even 1 test can make it impossible to make or rule out a diagnosis – and with reflex testing, omissions do not occur.
The Increasingly Glaring Safety Issue Involving Clinical Laboratories

Clinical lab test menu enlarges in size and complexity

Physicians highly uncertain about correct tests to order and how to interpret test results

PROBLEM: Clinical lab directors focus on operations - radiologists had the same issue in the 1980s and chose to focus on consultation with physicians ordering tests

Radiology
CLINICAL OPERATIONAL

Clinical Labs
CLINICAL OPERATIONAL
In both of these cases, until the patients arrived for evaluation and testing at the Massachusetts General Hospital --

There was NO systematic interpretation of test results or use reflex testing to guide test selection for evaluation of bleeding disorders
VON WILLEBRAND’S DISEASE (VWD)
Outline of Presentation

• Introduction
• Synthesis, secretion, metabolism, action and transport
• Clinical laboratory assays
• Types and subtypes
• Treatment
First described by Erik von Willebrand based on a 1926 study of inhabitants of the Aaland island in the Gulf of Bothnia.
Female nonbleeders
Male nonbleeders
Female bleeders
Male bleeders
Severe female bleeders
Severe male bleeders
hemorrhagic deaths
Early Study of Congenital Bleeding Disorders in Switzerland

Severity of Bleeding Disorder

<table>
<thead>
<tr>
<th></th>
<th>Severe</th>
<th>Moderate</th>
<th>Mild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemophilia</td>
<td>18</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Von Willebrand’s Disease</td>
<td>4</td>
<td>13</td>
<td>25</td>
</tr>
</tbody>
</table>
VON WILLEBRAND’S DISEASE

Synthesis, Secretion, Metabolism, Action, and Transport
THE TWO DIFFERENT ACTIVITIES OF THE FACTOR VIII-VON WILLEBRAND FACTOR COMPLEX

IX → XII → XI

X → IX → VII → VIII

Xa → VIII

III → VIII

V → II → IIa

Fibrinogen → Fibrin

Blood Vessel

PLT → vW → vW → vW

Wall
SYNTHESIS AND SECRETION OF VON WILLEBRAND FACTOR

Thrombin

Stimulates

Release of

vW Factor

Endothelial Cells Secrete vW Factor Luminally Into Blood

vW Only - No VIII

Endothelial Cells

PRO - vW 280 K

PRO - vW can form dimers

Higher oligomers found in cells with mature subunits of 200 - 250 K

Basement Membrane

Endothelial Cells Secrete vW Factor Basally to Subendothelium
VON WILLEBRAND’S DISEASE

Major Types and Subtypes
TYPE 1
VON WILLEBRAND’S DISEASE

Common Defect:
Slow release of normal vW factor from stores
TYPE 1
VON WILLEBRAND’S DISEASE

Quantitative disorder with normal multimer distribution - von Willebrand factor and ristocetin cofactor decreased approximately equally

Factor VIII may be normal or low
DDAVP can completely correct entire defect if it is mild, by stimulating vW Factor release from endothelium.
TYPE 2A
VON WILLEBRAND’S DISEASE

Decrease in high molecular weight multimers in plasma and sometimes in platelets

Synthesis of large multimers defective or increased proteolysis of large multimers

Ristocetin cofactor and von Willebrand factor antigen both very low
TYPE 2B
VON WILLEBRAND’S DISEASE

Decrease in high molecular weight multimers in plasma only

High molecular weight multimers of vW factor removed from plasma by binding to normal platelets

Plasma ristocetin cofactor and von Willebrand factor antigen both very low
Quantitative disorder with nearly undetectable levels of von Willebrand antigen and ristocetin cofactor

Either markedly reduced synthesis of normal von Willebrand factor or synthesis of a highly dysfunctional von Willebrand factor
INFLUENCE OF ABO BLOOD GROUP ON vW FACTOR ANTIGEN VALUES IN VOLUNTEER BLOOD DONORS

<table>
<thead>
<tr>
<th>ABO Type</th>
<th>n</th>
<th>von Willebrand Factor Mean Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>456</td>
<td>74.8</td>
</tr>
<tr>
<td>A</td>
<td>340</td>
<td>105.9</td>
</tr>
<tr>
<td>B</td>
<td>196</td>
<td>116.9</td>
</tr>
<tr>
<td>AB</td>
<td>109</td>
<td>123.3</td>
</tr>
</tbody>
</table>

Blood 69, 1691-1695, 1987
VON WILLEBRAND’S DISEASE

Clinical Laboratory Assays
THE RISTOCETIN COFACTOR ASSAY

Ristocetin:
Glycopeptide antibiotic from nocardia which aggregates platelets when vWF is available as a cofactor.

Formalin fixed platelets mixed with normal plasma undiluted/1:2/1:4/1:5/1:X
Ristocetin added and rate of platelet aggregation measured.

Rate of aggregation (units)

von Willebrand Factor Level

Standard Curve

Example: Undiluted test plasma is 20% of normal pool plasma.
ANTIGENIC VON WILLEBRAND FACTOR ASSAYS

Immunoassays of many different types are available.
VWF MULTIMER ANALYSIS BY IMMUNOBLOTS

Plasma Added

Electrophoresis Separates vW Multimers

Blot Proteins onto Different Surface
Add Antibody to vW Factor and Stain

Normal

Type 2 vW Disease - High Molecular Weight Multimers Reduced
<table>
<thead>
<tr>
<th></th>
<th>IgM</th>
<th>N</th>
<th>I</th>
<th>II A</th>
<th>II B</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- LARGEST MULTIMERS
- INTERMEDIATE MULTIMERS
- SMALL MULTIMERS
FACTOR VIII ASSAYS

Factor VIII deficient plasma mixed with dilutions of normal pool plasma to construct standard curve.

Activator

Calcium

Instrument Detects Clot Formation

Patient sample compared to standard curve to determine patient’s value for factor VIII.
WHAT IS A NORMAL vWF LEVEL?

- No general agreement
- Guidelines for diagnosis from the NIH are under evaluation – this should lead to a consensus statement on what levels of von Willebrand factor antigen and ristocetin cofactor required for a diagnosis
- The impact of blood type on establishing a diagnosis is an important issue that is considered in the consensus guidelines
- In the absence of guidelines, 50% von Willebrand factor is not uncommonly used as a threshold for “low vWF”
VON WILLEBRAND’S DISEASE

Treatment for Acute Bleeding
VWD TREATMENT OPTIONS

- Desmopressin
- Cryoprecipitate
- Replacement therapy with vWF-containing Factor VIII concentrates
TEST FOR DDAVP RESPONSE

Normal response of a normal subject

Lack of response

Cryoprecipitate is derived from fresh frozen plasma and contains von Willebrand factor - 1 bag/10 kg daily

May need 2-3 bags/kg/day if breakthrough bleeding

A patient is typically exposed to dozens of donors when cryoprecipitate is used
REPLACEMENT THERAPY FOR TYPE 3, SEVERE TYPE 2, AND SERIOUS BLEEDING IN TYPE 1 VWD PATIENTS

- Intermediate purity Factor VIII concentrates
 - Humate P
 - Alphanate

- Very high Purity (VHP) vWF
 - 10:1 ratio of vWF activity to factor VIII
 - If factor VIII <20% in vWD patient, also need to replace VIII
At the point the case is reported, the legal and medical systems merge in an effort to sort out the evidence as fairly as possible, with maximal “protection” given to the child. Many issues related to jurisprudence inhibit the sharing of information, while the medical community optimizes clinical outcome by information sharing.

The problem becomes apparent in the evaluation of child abuse when the treating physician is unable to discuss the case with experts brought by the defense who indeed might have specialized knowledge not available to the physician making the diagnosis of child abuse.”